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ABSTRACT

The effect of a Mach number correction on a model

for predicting the length of transition was investigated.

The transition length decreases as the turbulent spot

production rate increases. Much of the data for predict-

ing the spot production rate comes from low speed flow

experiments. Recent data and analysis showed that the

spot production rate is affected by Mach number. The

degree of agreement between analysis and data for tur-

bine blade heat transfer without film cooling is strongly

dependent of accurately predicting the length of tran-
sition. Consequently, turbine blade heat transfer data

sets were used to validate a transition length turbu-

lence model. A method for modifying models for the
length of transition to account for Mach number effects
is presented. The modification was made to two tran-

sition length models. The modified models were incor-

porated into the two-dimensional Navier-Stokes code,

RVCQ3D. Comparisons were made between predicted
and measured midspan surface heat transfer for stator
and rotor turbine blades. The results showed that ac-

counting for Mach number effects significantly improved

the agreement with the experimental data.
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INTRODUCTION

The accuracy of predictions for turbine blade aero-

dynamics and heat transfer is affected by the accuracy

in predicting the region of transitioning flows. The loca-

tions on the blade where transition begins and ends can

affect the aerodynamic performance. In applications

where turbine blade film cooling is absent, knowledge

of where transition begins and ends is important in
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predicting surface heat transfer. As discussed by Mayle
(1991), there is an extensive amount of experimental
data showing that the start and length of transition
are functions of Reynolds number, turbulence intensity,
and pressure gradient, in addition to any periodic dis-
turbances which may be present.

Much of the recent theoretical analysis for the

length of transition utilizes the spot production concept
of Emmons (1951) for intermittency. Narasimha (1957)
proposed that the intermittency follows an exponential
behavior, with the exponential term being proportional
to the square of the distance from the start of transi-

tion. The model proposed by Chen and Thyson (1971)
accounted for variable freestream velocity on the length
of transition by an integral relationship in the expo-
nential term. Two different approaches have been used
to account for the effects of turbulence intensity and
pressure gradient on the length of transition. Simon
(1995), Gostelow et al. (1994), and Frazer et al. (1994)
accounted for these effects by assuming that the flow
conditions at transition onset were the dominant influ-

ences. Solomon et al. (1995) extended the approach
of Chen and Thyson (1971) to account for free stream
flow variations on the length of transition.

Most of the experimental data used to develop cor-
relations for the transition length were obtained at in-
compressible flow conditions. There is only a limited
amount of data which show the effect of Mach number

on transition for the transonic flow regime. Dey and
Narasimha (1985) proposed a variation in the spot for-
mation rate with Mach number. Their variation showed
no change in the spot formation rate until a Math num-
ber of two, followed by a rapid decrease in the Mach

two-to-four range. Recent data by Clark et al. (1994)
showed that the effect of Math number on turbulent

spot parameters was significant at substantially lower
Mach numbers. Mack (1969) showed the effect of Math

number on the frequency of the Tollmien-Schlichting
waves, which in turn affects the spot formation rate.

The transition spot data of Clark (1993), and the
frequency results of Mack (1969) were used to derive
modifications to account for the effect of Mach number

on the length of transition. The modifications were in-

corporated into the models proposed by Simon (1995),
and Solomon et al. (1995). These models were then
implemented in a Navier-Stokes code. The code used,
(RVCQ3D), has been documented by Chima (1987),
and Chima and Yokota (1988). Comparisons with ex-
perimental turbomachinery data showed that incorpo-
rating Mach number effects into the transition length
model improved the agreement with experimental data.
Accurate transition predictions are important whether

or not surface heat transfer is present. Turbine blade
heat transfer data can dramatically show transition be-
havior, and data are available at high freestream Mach
numbers. Therefore, turbine blade heat transfer data

was chosen to illustrate the importance of including a
Mach number effect on the length of transition.

The work presented herein consists of a discussion

of how Mach number effects were incorporated into the
transition length model. Comparisons are then shown
for a variety of turbine conditions to show that incor-

porating a Mach number effect significantly improves
the degree of improvement with the experimental data.
Comparisons are made with data for both stator and ro-

tor geometries for a range of turbulence intensities and
Reynolds numbers. This is done to demonstrate that

the Mach number effect is a general one, which leads
to an overall improvement, and not just for a specific
test case. Results are shown for two different transi-
tion length models in order to demonstrate that the re-

sults are not a function of a particular transition length
model.

DESCRIPTION of ANALYSIS

In the transition region the effective eddy viscosity,
_EFF, is given by:

]-tEFF "- _MLAM "4-_f/_TURB

Different approaches have been used to determine

the value of intermittency, 7. Two recent approaches
to calculating the value of 7 are those of Simon (1995),
and Solomon et al. (1995). In both methods the inter-

mittency, 7, is a function of the pressure gradient A. In
the model of Solomon et al. the intermittency is also a
function of the turbulence intensity, Tu. Simon's (1995)
method utilizes an analytically developed value for the
spot production rate, while the method of Solomon et

al. (1995) utilizes a experimentally derived correlation
for the spot production rate.

Simon's Model. In Simon's (1995) model 7 is
based on the intermittency path equation derived by
Narasimha (1957):

"/'Simon_--"1.0- exp[-no'(Res- _eS_ST) 2]

The parameters in this equation are given by:

na =  V/Re sT

Simon (1995) developed an analytic value for the
nondimensional spot production rate, N.
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N = 8.1 × lO'4_Atan_2"
] ST

Simon and Ashpis (1996)showed results using val-
ues for A, a, and _ determined from the data of

Gostelow et al. (1995). The dimensionless spot param-

eter, A, is the ratio of the spot area to the square of the

spot half widthi A was determined from the zero pres-

sure gradient data to be 2.88. a and _ at the start of

transition were taken as functions of pressure gradient.

+ 22.14 :_ST-- 4.0

fiST = 0.71 + 1.35/AST :

Solomon, Walker, Gostelow,(SWG), Model. In the

model developed by Solomon Walker and Gostelow

(1995)

$ST $ST

In this equation n is determined by the values at

the start of transition; while _, a, and U are functions of

the local conditions throughout the length of transition.

The parameters in the above equation are:

NST//

n _- o.ST0_ T

For favorable pressure gradients,_sT > 0.0, and

NST = 8.6 × 10-4exp( - 10_- 0.5641nTu)

Otherwise,

that these conditions are not a function of the local

turbulence intensity.

There is no explicit Mach number effect for the cor-

relations used in either transition length model. The
measurements which provided the data for the correla-
tions were done at low Mach numbers where the flow

is incompressible. Clark et al. (1994) reported experi-
mental data showing that the freestream Maeh number

affects the spot spreading angle.

Mach Number Effects. Narasimha (1985) postu-

lated that the transition process is likely to be the same
for subsonic and supersonic flows. The effect of in-

creasing Mach number is to decrease the longitudinal
growth rate of turbulent spots. Owen and Horstman

(1972) showed intermittency data at hypersonic Mach

numbers which agreed with the intermitteney distribu-

tion developed by Narasimha (1957) for incompressible

flows. Dey and Narasimha (1985), proposed a varia-

tion in the nondimensional spot formation rate, N, with

Mach number. This variation showed little change up

to a Mach number of two. For 2 < M < 4, N decreases

rapidly. Recent data of Clark (1993), however, showed

that there was a significant decrease in the spot spread-
ing angle even for Mach numbers less than one. Si-

mon (1995) utilized the method used by Walker (1989)
and by McCormick (1968), regarding the frequency of

spot formation. The turbulent spots are assumed to

appear at the frequency of the Tollmein-Schlichting in-

stability wave with the maximum amplification rate.

The analysis of Mack (1969) showed that the frequency

of the Tollmein-Schlichting instability wave with the
maximum amplification rate decreased with Mach num-

ber up to sonic conditions. Simon (1995) showed that

the spot formation rate, N, and thus n, is propor-

tional to the square of the product of the spot forma-

tion frequency, f and the tangent of the spot spreading
angle,a.

NST -- 8.6 x 10 -4exp (2.134AST In Tu--59.23_ST--0.564 lnTu)

The variables calculated throughout the transition

length are given by:

( 2 .14
a = 4.0 + \0.79 + 2.72ea7-6zx}

{ O.37
¢r = 0.03 + _,0.48 + 3.0e_9.2x}

The primary differences between the transition

length model of Simon and the SWG model of Solomon

et al. (1995) are that Simon's model is based exclu-

sively on the conditions at the start of transition, and

n c< (liana) 9"

The spot production rate at a given Math

number,NM, can be related to the incompressible spot
production rate, N0._, by:

Crn -nM NM ._ ( tanotMfM )2no,t -- No._ ktanaoi_fo.t

The turbulent spot spreading angle data of Clark

(1993), and the Tollmein-Schlichting wave frequency

analysis of Mack (1969) were used to determine the ef-

fect of Mach number on the spot formation rate. Figure

1 graphically presents the relationship for the effect of
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Mach number on spot formation rate. The change in

the spot production rate can be viewed as effectively

increasing the length of transition by _/-_/n0.1
In summary, the transition length model of Simon

including the effect of Maeh number is:

nM

The Solomon, Walker Gostelow(SWG) model cor-
rected for Mach number effects is:

/ /
$ST $ST

In each model n0.1 is calculated based on the pres-

sure gradient, _,and, for the SWG model, the turbu-
lence intensity, Tu.

The start of transition was specified using Mayle's

(1991) method. The momentum thickness Reynolds

number at the start of transition is given by

Reo-sT = 400Tu -s/7

The local turbulence intensity, Tu, was determined

using an algebraic relationship. To determine the lo-

cal turbulence from a one or two equation turbulence

model would require knowledge of the inlet length scale.

For the cases examined, the inlet length scale was gen-

erally not available. The local turbulence intensity was
calculated as:

Tu = TuINUIN/Us

The local freestream velocity, Us, was calculated from

the local pressure ratio. Mayle (1991) recommended
that a lower limit of 3% should be used for Tu when
calculating Reo at the start of transition.

The transition models were incorporated into a

quasi-3d Navier-Stokes analysis, (RVCQ3D). This code

has been documented by Chima (1987), and by Chima

and Yokota (1988). C-type grids were generated using
the method of Arnone et al (1992). In this approach,

the near-wall grid is embedded within a coarser grid ob-

tained using the method of Sorenson (1980). For this

work dense grids were used. A typical grid was 321 x 51.
This was done to achieve high resolution within the

transition region. The choice of grid parameters, such

as near-wall spacing and stretching ratios was deter-

mined using the results presented by Boyle (1991) and
by Boyle and Ameri(1997), Therefore, the conclusions

drawn from this work would not be affected by the size
of the grids used.

The Baldwin Lomax (1978) model was used for the
turbulent eddy viscosity, ]2TURB. This model was used

for two reasons. First, it has been shown by Ameri

and Arnone (1992), and by Chima (1996) that algebraic
models of this type predict turbine blade surface heat

transfer as accurately as two equation models. Second,
an algebraic model, rather than a two equation model,
allows a more straightforward demonstration of the ef-

fects of Mach number on the length of transition.

Because the freestream turbulence was high for
many of the cases examined, the Smith and Kuethe
(1966) model was incorporated to account for the ef-

fects of freestream turbulence on the laminar flow. The

augmented laminar viscosity is:

]2LAM -- ]2GAS "_" (1.0 -- 7)O.164pyTuU

y is the normal distance from the blade, and _uGAs is the

molecular viscosity of the gas. Augmenting the laminar
viscosity primarily affects the heat transfer in the lead-

ing edge region. The effect of the Smith and Kuethe

(1966) model on the pretransition heat transfer will be
discussed.

DATA COMPARISONS

In actual turbomachines most blade rows are sub-

ject to periodic flow field variations due to the presence

of adjacent blade rows. The accuracy of prediction for

the time averaged heat transfer would be affected by the
accuracy in predicting the effects of the periodic distur-
bances. Since the objective of this work is to illustrate

the importance of Mach number effects, comparisons
are made for isolated blade row test cases. In these

test cases the blades were not subject to periodic dis-

turbances. This eliminated the necessity of accurately
predicting the periodic disturbance effect.

4



Table I. Stator cases examined

Data- Arts et a1.(1990) I

Suction Pressure rRe2 _ M2 Tu ss, r/s,r ,_o [ s�_/ST A99 ssT/sr Ao s99/S,r A99

_1o-- _ I I I '"
2. 0.0 0.0 0.30 0.010 [ 0.78 -0.141 ] 0.12 0.075 ] 0.77 0.105 ]

2. 1.1 0.0 0.30 0.025 I 0.97] -1.816 I 0.12 0.078 J 0.70 i 0.111 /

[ 2. 1.1 4.0 0.30 0.024 ] 0.97] -1.922 ] 0.24 0.066 ] >1 97% ] 1.2

[ 1. 0.8 6.0 0.36 0.053 [ 0.77 I -0.083 [ 0.13 0.078 I 0.76 0.102 ]

[ 1. 1.1 6.0 0.57 0,025 I > 1 I 77% I 0.10 0.070 [ 0.62 0.133 ] _" '.0
] .,, Data- Hylton et a!.(1983) no

[ Suction [ Pre_ure A99 [/ E
J Re_ _ Ms Tu SST/Sr Ao sp_/_z' I _,99 SST/_r ,_o 899/t,T = 0.8

, xio- _ f I I I =o
[1.5 0.00] s.3 0.28 -0.005I asS ]-0.167[ 0.10 0.014J 0.48 0.114|
12.5 Los I s.3 0.28 -0.009i 0.58 I 0.007 [ 0.09 -0.005[ 0._5 0.120/ o o.e

The test cases chosen were those that showed tran- E o.4
sition occurring over a significant fraction of the surface "*

distance. The iiterature shows many cases where tran- 0_

sition occurs over a very short distance near the leading
edge or close to the trailing edge. These cases were not

suitable test cases. Generally, moderate to high levels

of turbulence intensity were required in the test cases.

It is necessary to examine data from a variety of differ-

ent sources, and under different conditions, in order to

insure that that the proposed method of accounting for
Mach number effects results in improved predictive ca-

pability. Comparisons with a variety of different cases

also illustrates where improvements in the models are

needed. Both stator and rotor geometry test cases were
examined. The stator cases chosen were from Arts et

al. (1990), and from_Hylton et al. (1983). The rotor

cases presented were those of Arts et al. (1997). These
data show rotor surface heat transfer for a range of
Mach numbers, Reynolds numbers, and rotor incidence

angles.

Stators

Table I summarizes the test conditions for each of

the cases presented. The Reynolds and Mach numbers,

as well as the upstream turbulence intensity are shown

for each case. Predicted values at the beginning and end

of transition are also shown in the Table. These pre-

dictions are for the Solomon, Walker, Gostelow,SWG,
model with the Mach number effect included. The sur-

face distance at which transition starts, (SST/ST), and

the surface distance at which 7 = 99%, (s99/ST) are
shown. The total surface distance, ST, is different for

the suction and pressure surfaces. The values given for

A are the predicted values at the beginning and end

of transition. The predicted values for s99/sT and A99

vary according to the transition length model used. The

values shown in the table, therefore, are primarily use-

ful for orientation purposes. Where the table entry is
> 1 transition was not complete at the end of the vane,

and the corresponding percentage number is the 7 value

at the trailing edge.

Data of Arts et al. (1990). Figure 2 shows a com-

parzson of measured and predicted isentropic surface

A zx ,.._.--,_

_,J_ -s_

? v" ---- .,--o.878
/ 7 .... _M_=1:02

/ _ o _Exp.u,---o..

_ _ Exp. M2=1.02

0.0;
oo o:s I:o

Surface distance, s/c

Fig. 2 Isentroplc surface Mach number. Data of Arts et ai.(1990)

Stator Re:2.1X10" M2--0.9 Tu:6%
8

cm=l.. =_

/ *--....

%\ I r'.
• r

v

6

2

0 ,

-1.00 0.00 0_

Pressure Surface

, I

-0.5O

1:5

Surface distance. Ii/c

Fig 3 Effect of Mach number correction on predicted heat transfer.

Mach numbers for this geometry. Data were given at

three different exit Mach numbers, M_, which were

somewhat different from the M2 values used for the

heat transfer tests. At the lowest Mach number, the

suction surface Mach number peaks midway along the
surface. At the highest Mach number the data show

a peak Mach number at 80% of the surface distance,

and the prediction shows the peak occurring somewhat

later. Overall, the analysis agrees well with the data,

and predicts most surface velbcity gradients accurately.

Figure 3 compares heat transfer predictions with

and without a Mach number correction with the exper-

imental data. For this vane geometry, ss/c = 1.34,and

sp/c = 1.03. The Stanton number, St, is based on
the vane exit conditions. These data are for an exit

Reynolds number of 2 × 106, a M_ = 0.9, and Tu = 6%.
The predictions for the suction surface show that both

Simon's model and the SWG model show improved
agreement with data when the Mach number correction

! •

&
SuCtion Surface

Simon Cm=l.

.... Simon Cm=I(M)

..... SWG Cm=l.

--- SWG Cmff(M)

• Data Arts et aL(1990)

_._ ' ,_
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--- SwGCm=r(M)
• Data Arts et a1.(1990)
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Fig. 4 Effect of Mach number correction on predict•rib•at h'ansfe¢.
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Fig 5 Effect of model assumptions on predicted heat transfer.

1.,

is used. The predicted location for the start of tran-

sition on the pressure surface was close to the leading

edge. Since this was a low Mach number region, the in-

clusion ofa Mach number effect did not change the tran-

sition length prediction. The small differences on the
pressure surface are due to the differences between the

Simon and SWG turbulence models. Comparing the

analysis and data shows that using the ratio of local-to-

inlet velocity to calculate the local turbulence intensity

for the start of transition gives good agreement with
the data.

Figure 4 shows comparisons for the same test con-

ditions as in figure 3, but at a higher exit Mach number,
M_, of 1.1. The Mach number at the start of transition

is 0.92. For both transition models including a Math

number correction in the transition length model signif-

a

7

6

_4

3

2

Stator Roz=l.Xl0 _M_0.8 TU=6%

Press.mSurface _. Cm=l._/"__ _
/,,'7

.... _ I\ I^t //,/\/.
'\\ ] I] ' I'I ._ _---SimOn's model
____v,_A" '/_; * /_/ i, "

ill : _11 .,<_tu.:,%.o•..',._\.I P,'1:,71/:"-

x_ . .
-- Simon C_M) A --26 Tum=l.5

, i , r , r ,.,.oo ..o_ o_ _ _ ,_
Surface distance, s/c

Fig. 6 Effect of model assumptions on pre_cte_ heat transfer.

icantly :improves the agreemen_ for the suction surface.

Along the aft portion of the suction surface, the analysis
overpredicts the heat transfer. The implication of the

results in this figure is that even though the Mach num-

ber correction substantially affects the length of transi-

tion, the effect may be underestimated. Mayle (1991),
in a discussion of Sharma's (1987) results indicated that

the intermittency used in the energy equation could be

lower than that used in the momentum equations. If

this approach had been taken in the analysis, the ap-

parent transition length would be longer.

Figure 5 shows comparisons for a reduced upstream
turbulence intensity of 4%. The comparisons illustrate

the importance of correctly predicting the startof tran-

sition. Because of the lower upstream turbulence inten-

sity, the predicted turbulence intensity at the start of

transition was very low. Mayle (1991) recommended

a minimum intensity of 3% be used in calculating the

start of transition. This value produced a very early

transition. Comparisons with the data show that spec-

ifying a turbulence intensity of 1.5% produced an early

suction surface transition, while an intensity of 1% gave
a transition after the experimental results.

Figure 5 also illustrates the effect of a variable near

wall damping coefficient, A +, on predicted heat trans-

fer. The variation of A + with pressure gradient used

is the same as that used by Crawford and Kays (1976)
in the STAN5 boundary layer analysis program. Pres-

sure surface transition occurs near the leading edge.

The strong favorable pressure gradient results in an in-

creased value for A +. This in turn reduces the length

scale in the near wall region, giving lower Stanton num-
bers. Paradoxicly, a variable A + resulted in increased
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Fig 7 Effect of model assumptions on predicted heat transfer.

leading edge heat transfer. This unexpected behav-

ior was caused by the manner in which the Smith and

Kuethe (1996) leading edge augmentation model was

incorporated into the analysis. The turbulence quanti-

ties were calculated everywhere, not just where 7 > 0.
The Smith and Kuethe model was applied only in the

inner region. However, the distance from the wall at
which the turbulence model crossed over from the in-

ner to outer regions was affected by A +. When A + was

variable, the Smith and Kuethe model was applied over

a greater distance from the wall than when A + - 26.

Next, comparisons are shown where the exit

Reynolds number has been reduced in half. Figures
6 and 7 show results for Tu - 6%, and exit Mach num-

bers of 0.8 and 1.1. At this lower Reynolds number, the

degree of agreement for the pressure surface heat trans-

fer is significantly poorer. It is felt that the primary

reason for the poorer agreement on the pressure sur-
face is that the only mechanism for relaminarization is

the variation in A +. From the data it appears that the
increase in A + at these test conditions is insufficient.

Kays and Crawford (1980) state Chat a boundary layer
will relaminarize at K values around 1 - 3 × 10 -6. Since

- KRe_, if the pressure gradient is high enough, and

transition occurs at a low enough Ree, the boundary

layer is likely to relaminarize. At high turbulence levels,

transition begins at low Ree. The values of _, and Ree

were calculated throughout the pressure surface transi-

tion region. The resulting K values were greater than

the K value for relaminarization using the Kays and
Crawford criteria.

On the suction surface the choice of transition start

is the most influential factor in the heat transfer. As the

minimum turbulence intensity is lowered, the analysis
gives better agreement with the data for the transition

region. However, prior to transition, and in the early

part of transition, the predicted heat transfer signifi-
cantly underpredicts the surface heat transfer.

Consistent with the results at the higher Reynolds
number, the best agreement for the suction surface heat

transfer occurs when the local turbulence intensity is

close to 1%. The overall conclusion from the compar-
isons regarding the start of transition is that the local

turbulence intensity at transition start should not be

specified. Rather, it should be calculated from an ap-

propriate model, and not have a preset lower limit.

C3X data of Hylton et al. (i983). The predicted
and experimental isentropic surface Mach numbers for

test cases 4321, (M2 = 0.90), and 5521,(M2 = 1.06),
are shown in figure 8. For the lower exit Mach num-

ber the peak suction surface Mach number is near 20%

of the surface distance. The higher Mach number case

has the peak close to 40% of the surface distance, af-
ter which there is rapid diffusion. From Table I it can

be seen that transition is expected to start near 30%

suction surface distance. If transition starts after the

peak in suction surface velocity, the transition length

is expected to be short because of the adverse pressure

gradient. There is good agreement between the analy-
sis and the data, except for thelast third of the suction

surface at the higher Mach number.

Figures 9 and 10 show comparisons between pre-
dicted and experimental heat transfer for cases 4321

and 5521. The actual heat transfer coefficient, h, was

normalized by a reference value, hR of l135W/m2/K,
as was done by Hylton et al. The cases have the same

inlet Tu, (8.3%), but differ in exit Reynolds and Mach

numbers. In figure 9 the effect of including a Mach hum-
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ber correction produced only a small change in the tran-
sition behavior. The start of transition was in an ad-

verse pressure gradient region, and the transition length
was very short. The results in figure 10, where transi-

tion starts in a favorable pressure gradient region, show
a significant effect when the Mach number correction

is applied. The suction surface data show an earlier

than predicted transition start. However, changing the
turbulence intensity at the start of transition from 1%

to 2% did not improve the agreement with the data.

The predicted heat transfer in the leading edge region

is higher than the experimental values. Along the pres-

sure surface incorporating A + as a function of pressure

gradient improved the agreement with the data. Using
measured surface temperatures instead of a uniform av-

erage temperature resulted in significantly better agree-

ment with the data. However, only the rearward part

ation in surface heat transfer with Reynolds number,

Mach number, and perhaps most importantly, rotor in-
cidence angle. All of the comparisons are made at an
upstream Tu of 4%. Table II shows the same informa-

tion as presented in Table I, but for the rotor geom-

etry. Figure 11 compares predicted surface isentropic
Mach numbers with experimental results at different

incidence angles. The primary purpose of this figure is
to illustrate the degree to which incidence variations af-

fect the surface pressures. Negative incidence, with the

corresponding reduction in flow turning, gives rise to a

strongly favorable pressure gradient over much of the

suction surface. Away from the leading edge the sur-
face isentropic Mach numbers for the different incidence

values converge. The analysis predicts the peak surface

Mach number ahead of the experimental data, and the
peak predicted value is lower than the data. When the

transition region extends to this region the differences

in isentropic Mach numbers may affect the agreement
between the analysis and experimental heat transfer.
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Figures 12, 13, and 14 show the effect of an exit

Mach number variation on the length of transition.

The agreement between the predicted and experimen-
tal isentropic Mach numbers was closer for the subsonic

exit Mach number, than for the M2 - 1.1 results shown

in figure 11. These results are for an exit Reynolds
number of 1.05 × 106. Because the ratio of inlet Mach

number to exit Mach number is much greater for a rotor
than a stator, there is less variation in the freestream

Tu. Even though Tu = 4% at the inlet, the local Tu
is greater than 2% at the start of transition. These

results again show that including the effect of Mach

number in the transition length modeling improves the

agreement with the data. Both model predictions show
better agreement with the data when a Mach number

correction was used. The SWG model gives" the best
agreement with the data.

Increasing the exit Mach number to 1.1 did not

affect the degree of agreement with the data. A variable

near wall damping coefficient, A + did not improve the
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agreement for the pressure surface heat transfer.

Figure 14 shows evidence of a shock-boundary layer
interaction for the highest exit Mach number. The

peak isentropic Mach number was calculated to be 1.66.

Even in the presence of the shock, the analysis shows
good agreement with the experimental data.

Figure 15 shows the effect of an increased exit

Reynolds number. Again, including a Mach number

correction improved the agreement with the data for the

suction surface. At this higher Reynolds number includ-
ing a leading edge augmentation resulted in heat trans-

fer rates much higher than the experimental data. This

behavior is consistent with the arguments advanced by
Dullenkopf and Mayle (1992). They concluded that the

coefficient in the Smith and Kuethe (1966) leading edge

heat transfer model should be decreased as Tu Rv/'_-d_
increased. When Tu _V_R-_ > 25, the coefficient in the

correlation of Smith and Kuethe (1966) should be re-
duced to 40% of its value for low values of Tu _v_R-_.

The data shown in figure 15 has Tu Rv/_ = 10. A forty
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to fifty percent reduction in the Smith and Kuethe

model coefficient would significantly improve the agree-

ment with the data. The pressure surface comparisons
are consistent with those at the lower Reynolds num-

ber. A variable A + does not improve the agreement
with the data.

Comparing figures 13, lfi and 17 shows the effect of

a variation in pressure gradient caused by a variation

in incidence. For a negative incidence of 140 including

a Mach number effect improved the agreement with the

data. The higher than measured heat transfer midway
on the suction surface implies that 7 initially increased

too rapidly. The positive incidence case shows tran-

sition occurring over a very short distance due to the

adverse pressure gradient in this region. The positive

incidence case is similar to the results shown in figure

9 for the C3X stator data of Hylton et al. (1983), and
the degree of agreement is similar.

The prediction of the leading edge heat transfer is

good for the two negative incidence cases, but the pre-
dicted values exceed the data for the positive incidence

case. These results are als0 consistent with the conclu-

sions of Dullenkopf and Mayle (1992) in that at high
Reynolds numbers the correlation of Smith and Kuethe

(1966) would overpredict the leading edge heat transfer.

For the same exit Reynolds number, the inlet Reynolds
number increases with incidence. On the pressure sur-

face the effect of varying A + with pressure gradient im-
proved the agreement with data only for the forward

region at 14 degrees negative incidence. On the rear

portion of the blade, assuming A + constant gave good
agreement with the data.

CONCLUDING REMARKS

The results of this work show that a Mach num-

ber effect should be incorporated in a transition model.
The proposed model accounts for the effect of Mach

number on both the frequency of spot formation and

the turbulent spot spreading angle. The results shows

reasonably good agreement with the experimental data

over the length of transition. Almost without exception,
including the Mach number effect improved the agree-

ment with the data for both Simon's (1995) model, and

for the Solomon, Walker, Gostelow (1995) model.

For moderate to high turbulence levels a simple

model for predicting transition onset gives reasonably

good agreement with data. When the predicted level of

turbulence at the start of transition is below 2%, best

agreement with the data was achieved when R£e-ST
was allowed to increase as the predicted turbulence level
decreased to about 1%.

The analysis incorporated a model to account for

the effect of freestream turbulence on heat transfer

in the laminar and transitioning regions. The model
showed reasonably good agreement with the data. How-

ever, at high Reynolds numbers the leading edge heat

transfer was too high. The approach taken by Dul-

lenkopf and Mayle (1992) might have led to an improved
prediction. While the comparisons with data were for

the entire blade surface, the primary focus of this in-

vestigation was to validate an approach to account for

Mach number effects on the length of transition. The

appropriateness of using a model to vary the near wall

damping coefficient, A + as a function of pressure gra-
dient was not resolved. For the stator cases examined

a variable A + gave improved agreement. However, for

the rotor cases choosing A + = 26 gave the better agree-
ment.
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